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The electrophoretic motion of an arbitrary prolate body of revolution perpendicular to 
an infinite conducting planar wall is investigated by a combined analytical-numerical 
method. The electric field is exerted normal to the conducting planar wall and parallel 
to the axis of revolution of the particle. The governing equations and boundary 
conditions are obtained under the assumption of electric double layer thin compared 
to the local particle curvature radius and the spacing between the particle and the 
boundary. The axisymmetrical electrostatic and hydrodynamic equations are solved by 
the method of distribution of singularities along a certain line segment on the axis of 
revolution inside the particle. The analytical expressions for fundamental singularities 
both of electrostatic and hydrodynamic equations in the presence of the infinite planar 
wall are derived. Employing a piecewise parabolic approximation for the density 
function and applying the boundary collocation method to satisfy the boundary 
conditions on the surface of the particle, a system of linear algebraic equations is 
obtained which can be solved by matrix reduction technique. 

Solutions for the electrophoretic velocity of the colloidal prolate spheroid are 
presented for various values of a /b  and a/d, where a and b are the major and minor 
axes of the particle respectively and d is the distance between the centre and the wall. 
Numerical tests show that convergence to at least four digits can be achieved. For the 
limiting cases of a = b or d+co, our results agree quite well with the exact solutions 
of electrophoresis of a sphere moving perpendicularly to an infinite planar wall or of 
a prolate spheroid in an unbounded fluid. As expected, owing to the effect of the wall, 
the electrophoretic mobility of the particle decreases monotonically for a given 
spheroid as it gets closer to the wall. Another important feature is that the wall effect 
on electrophoresis will reduce with the increase of slenderness ratio of the prolate 
spheroid at the same value of a/d. The boundary effect on the particle mobility and 
flow pattern in electrophoresis differ significantly from those of the corresponding 
sedimentation problem and the wall effect on the electrophoresis is much weaker than 
that on the sedimentation. In order to demonstrate the generality of the proposed 
method, the convergent results for prolate Cassini ovals are also given in the present 
paper. 

1. Introduction 
A charged particle suspended in an electrolyte solution is surrounded by an electric 

double layer of diffuse ions carrying a total charge equal and opposite in sign to that 
of the particle. When an electric field is imposed on the particle, the latter moves 

t To whom correspondence should be addressed. 
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toward the electrode of opposite sign while the ions in the diffuse layer migrate in the 
other direction. This motion is termed electrophoresis and has been the subject of many 
investigations in chemical engineering and biomedical engineering such as particle 
characterization or separation in various colloidal and biological systems. 

The electrophoretic velocity U, of an isolated charged particle suspended in 
unbounded electrolyte fluid of viscosity 7 and dielectric constant c is related to the 
applied electric field Em by the Smoluchowski equation 

where 6 is the Zeta potential associated with the particle surface. The ratio U,/E, is 
known as the electrophoretic mobility of the particle. Equation (1.1) is valid for non- 
conducting particles of arbitrary shape, provided that the local radii of curvature of the 
particles are much larger than the thickness of the double layer surrounding the 
particles. 

In many applications of electrophoresis, colloidal particles are not isolated and will 
migrate in the presence of neighbouring particles or boundaries. So it is important to 
modify the Smoluchowski equation to account for the effect of this on the 
electrophoretic velocity. In the past two decades, considerable progress has been made 
in this area. Reed & Morrison (1980) considered the electrophoretic problem of two 
arbitrarily oriented spheres of equal radii using spherical bipolar coordinates. This 
work was then extended by Chen & Keh (1988) and Keh & Chen (1989a, b) to the 
electrophoretic motion of two arbitrarily oriented, freely suspended spheres with 
arbitrary ratio of radii and Zeta potentials by the method of reflections and by using 
spherical bipolar coordinates. Utilizing the boundary collocation technique, the 
axisymmetric electrophoretic motion of multiple spheres along their line of centres was 
studied by Keh & Yang (1990) with no restriction on Zeta potential, sphere radii and 
distance apart. Numerical results with good convergence are calculated even if the 
spheres are touching. 

The electrophoretic velocity of a non-conducting sphere in the vicinity of an infinite 
planar wall has been examined for two cases: migration normal to an infinite 
conducting planar wall (Morrison & Stukel 1970; Keh & Lien 1989) using bipolar 
coordinates ; and electrophoresis parallel to an infinite non-conducting surface (Keh & 
Chen 1988). In both studies, modifications of the Smoluchowski equation were 
determined for various A, dimensionless sphere radius with respect to the distance 
between the particle centre and the boundary. The parallel wall effect was found to 
impede the particle velocity for moderate and large separations between the sphere and 
the boundary, while this velocity tends to increase as the separation became small. On 
the other hand, the electrophoretic velocity decreases steadily when the particle 
approaches normal to the wall and tends to zero in the limit position when it touches 
the wall. Another important conclusion of these analyses is that the boundary effect on 
electrophoresis (O(A3)) is much weaker than that on sedimentation (O(A)). 

Other sphereboundary problems that have been studied include the electrophoretic 
movement of a particle inside an infinite long tube or along the centreline between two 
large parallel plates (Keh & Anderson 1985); the electrophoresis of a colloidal cylinder 
parallel or perpendicular to an infinite planar wall (Keh, Kuo & Kuo 1991); the 
electrophoretic motion of a sphere along the axis of a circular orifice or a circular disk 
(Keh & Lien 199 1). All previous solutions for the wall-corrected electrophoretic 
velocity of a particle are available only for a sphere or a circular cylinder. In this paper 
we will consider the axisymmetric electrophoretic motion of an arbitrary prolate body 
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of revolution in the presence of an infinite conducting wall. The method of internal 
distribution of the singularities developed by Wu (1984), Yuan & Wu (1987) is adopted 
to solve the quasi-static electrostatic and the hydrodynamic equations. The modified 
Smoluchowski equation for the prolate spheroid and Cassini oval are obtained with 
satisfactory convergence and the electric field lines for the electrophoretic motion and 
streamlines for fluid motion are presented for some cases. The considerable difference 
between electrophoresis and sedimentation both in particle mobility and flow pattern 
are also explored. 

The present investigation consists of five sections. In $2,  the problem of 
electrophoretic motion of an arbitrary prolate body of revolution toward an infinite 
conducting planar wall is formulated. Section 2 also contains the solution scheme for 
this body. The elementary solutions of the electric and hydrodynamic equations 
representing the disturbance of a sphere are given in 93. Results of the wall-corrected 
Smoluchowski equation for a prolate spheroid and a Cassini oval and their flow 
patterns in comparison with the corresponding sedimentary motion are presented in 
$4. Finally, a short summary and discussion are given in 95. 

2. Mathematical formulation 
Consider the axisymmetric electrophoretic motion of a non-conducting arbitrary 

prolate particle of revolution translating toward an infinite conducting planar wall. 
Cylindrical and spherical coordinates (R, 8 ,Z )  and (r, 8, $) are introduced with the 
origin at 0 (figure 1) .  A uniform electric field E, e, is imposed on the particle, where 
e, is the unit vector in the z-direction. Assume that the thickness of the double layer 
is much smaller than the characteristic curvature radius of the particle and the spacing 
between the particle and the planar wall, and the fluid outside the double layer is 
electrically neutral with constant conductivity. The governing equation for the electric 
potential distribution $(x) is the Laplace equation 

VZ$ = 0, (2.1) 

with the following boundary conditions on the particle surface, on the conducting 
planar wall and at infinity: 

- " = 0 at the surface, 
an 

(2.2a) 

$=-E ,d  at z = d ,  d>O,  (2.2b) 

$--E,z  as r+m,  (2.2 c) 

where n denotes the outer unit vector of the body surface. The potential on the 
conducting wall has been set at -Em d for convenience. 

Once the electric field is determined, we proceed to obtain the fluid field. The 
Reynolds number of the fluid motion outside the thin double layer is small, so the 
governing equation for the stream function $ of the present axisymmetric quasi-steady 
Stokes flow is 

D2(D2$) = 0,  (2.3) 

where the Stokes operator D2 has the form 
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FIGURE 1. Configuration of a prolate spheroid in electrophoretic motion towards an infinite 
conducting wall. 

in cylindrical coordinates. The stream function $ is related to the velocity components 
and pressure by 

ap 1 a ap 1 a 
- (D2$), - = ---(D’$). az-zaR aR RaZ 

(2.5 a, b) 

(2.6 a, b) 

The electric field acts on the double layer of the ions at the particle surface and 
induces an electro-osmotic tangential velocity Us on the surface of the particle (more 
precisely at the outer edge of the thin double layer) which is related to the local electric 
field E, = - Vq5 by the Helmholtz equation for electro-osmotic flow. On account of this 
fact, the boundary conditions for the fluid field are 

V = Qe,+-V$ €6 at the surface, (2.7a) 
4x7 

V=O at z = d ,  
V - 0  as r - t o o ,  

(2.7b) 
(2.7 c)  

where U, is the instantaneous electrophoretic velocity of the particle to be determined. 
Note that the local electric field Vq5 must be calculated from the electrostatic equation 
(2.1) and boundary conditions (2.2a-c). 

In order to determine the electrophoretic velocity U, of the particle, it is convenient 
to decompose the boundary condition ( 2 . 7 ~ ~ )  on the particle surface and the total flow 
into two parts, using the linearity of the governing equation and boundary conditions. 
The first part contains (2.3), (2.7b), ( 2 . 7 ~ )  and the boundary condition on the particle 
surface 

V =  Qe, 

corresponding to the fluid motion of an arbitrary prolate particle of revolution 
translating perpendicularly to an infinite planar wall with uniform velocity (2.8), while 
the second part has the same equation and boundary conditions except (2.8) which is 
replaced by 

ck v=--vq5 
4x7 

(2.9) 
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as the boundary condition on the particle surface. It represents the fluid flow disturbed 
by an infinite planar wall and a stationary arbitrary prolate particle with a tangential 
electro-osmotic velocity (2.9) at the particle surface layer. Once these two boundary 
value problems are solved, the electrophoretic velocity is readily obtained, since the net 
force exerted by the fluid on the particle must vanish because it is suspended freely in 
the fluid and the diffuse double layer encloses a neutral body. Writing the zero drag 
requirement we have 

where the &(i = 1,2) are the net force from the fluid acting on the body surface which 
can be obtained by the two boundary value problems (2.8) and (2.9) respectively. The 
original vector form of (2.10) is reduced to a scalar one since no rotation occurs and 
the components of the net force have only one non-zero term in the z-direction because 
of the symmetry of the motion. The net force of the first problem E; can be written in 
the form E; = - 61tqLU, a = - U, FiO', 
where Fp)  = 6n77La; a is correction factor to Stokes law due to the presence of the wall. 
Substituting (2.1 1) into (2.10) we have the electrophoretic velocity U, of the particle: 

Equation (2.12) shows that only the ratio of Fj") and 4 determines the electrophoretic 
mobility of the particle. Thus our main problem is to find 4(i = 1,2), which will be 
accomplished in the following sections. 

(2.10) 4+l$ = 0. 

(2.11) 

V, = $/F{O'. (2.12) 

3. Method of internal distribution of singularities in electrophoresis 
In this section, we will use the method of internal distribution of singularities 

developed by Wu (1984) and Yuan & Wu (1987) to solve the electrophoretic equation 
and hydrodynamic equation describing the electrophoresis of an arbitrary prolate 
body of revolution moving perpendicularly toward an infinite conducting wall along 
its major axis. The main idea of the solution procedure may be summarized as follows. 
First, we obtain the analytical expressions in infinite series form for the fundamental 
singularity of the Laplace equation and the Stokes equation in the presence of the 
infinite planar wall. These two singularities will be referred to henceforth as L and S, 
respectively. Distributing these singularities continuously along a certain segment on 
the symmetry axis inside the body, two sets of integral equations result to determine 
the density distributions. Dividing the segment into N subsegments and approximating 
the density function by an interpolating polynomial at each subsegment, we are able 
to derive successfully the analytical expressions for the electrostatic field and the 
hydrodynamic field. The boundary conditions on the infinite planar wall and at infinity 
are automatically satisfied, and the non-slip condition on the particle surface is satisfied 
by the collocation technique. Hence two sets of linear algebraic equations for the 
density functions of L singularities and S singularities are obtained which can be solved 
by any matrix reduction method. We will first consider the electric potential field and 
then turn to the velocity field outside the particle. 

3.1. Electric potential distribution 

We will construct the elementary solution of the Laplace equation due to the 
disturbance of the wall and the singularity located at R = 0,Z = [. Since the governing 
equation and boundary conditions are linear for an electric field, we can write the 
disturbed potential 4 for the region z d d as the superposition of 4w and q5s: 

4 = 4 ,  + $8, (3.1) 
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where gW is a solution of (2.1) in cylindrical coordinates which represents the 
disturbance of the wall and can be expressed as 

4, = A(k) J,(kR) ek(’-O dk, 
0 

where J,(x) is the Bessel function of the first kind of zero order and A(k) is an unknown 
function of k. The second term on the right-hand side of ( 3 4 ,  q5s, is a solution of (2.1) 
in spherical coordinates representing the disturbance produced by the singularity and 
is given by 

W W 

4, = C T, r-(n+l) Pn(cos 9) = C T, Ft) (R ,  2- LJ, 

FF)(R, 2) = r-n-l Pn(0, (3 -4) 

where r = (R2+Z2) i  and y =  cosd = Z / R .  (3 * 5) 

(3.6) 

(3.3) 
n=O n=o 

where Pn(x) is a Legendre function of nth order, and F t ) ( R , Z )  is defined as 

The requirement that the potential on the wall should be zero yields 
00 

Jom A(k) J,(kR) ek(d-O dk = - T, f ’ t ) ( R ,  d -  8. 
n=o 

Applying the inverse Hankel transformation on both sides of (3.6) and using an 
integral formula (Erdelyi et al. 1954) 

Re (y)  > - 1, y > 0; Re 0.) > f, 
one can easily obtain 

where P;-l is an associated Legendre function of order p- 1 and of time y, T(x) is a 
Gamma function of the second kind, and a is a constant. Substituting (3.8) into (3.2) 
and utilizing the following integral (Erdelyi et al. 1954): 

y > 0, Re (a) > 0, 

after some algebraic manipulation, we have 
W 

4 = Tn[F~’ (R ,Z-LJ- -F~) (R ,2d-Z-LJ] ,  (3.10) 

# = O  at z = d .  (3.11) 

The components of the corresponding electric field E, and ER can be obtained as partial 
differentials of 4 with respect to Z and R respectively, which together with 4 are given 
in the following compact vector form: 

n=O 

(3.12) 
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where 

(3.14) 
1 
R 

F f ) ( R ,  2) = (n + 1) rPn -In+l(a, 

where In is a Gegenbauer function of order n. Here we use the relationships 

a 

a 

gF;)(R,  2) = -(n + 1) FFil(R, Z ) ,  

% F t ) ( R ,  2) = - (n  + 1) Ff i1(R,  2). 

Following the approach presented in Wu (1984), a segment of a straight line 
AB (- c, c) inside the body is chosen, where 2c is the length of the line segment. If 
the nose and tail of the body are rounded, then their centres of curvature could be 
prescribed as A and B. Distributing the singularity (3.12) continuously over AB, plus 
the undisturbed uniform electric potential, we obtain the potential and electric field 
distribution as follows : 

n=O J -e 

where A(Q is an unspecified density function of singularities along AB which is to be 
determined by non-slip boundary conditions on the surface of the particle. 

Obviously (3.15) satisfies the governing equation (2.1) and the boundary conditions 
on the wall (2.2b) and at infinity ( 2 . 2 ~ ) .  All that remains is to satisfy the condition on 
the surface of the body ( 2 . 2 ~ ) .  This will eventually lead to a set of integral equations 
to be solved for the unknown density function A(Q. Since the complexity of the kernel 
functions in the integral equation and the particle contour in (3.15) precludes an 
analytical solution, the integral equations will be solved approximately. 

To this end, following the approach proposed by Yuan & Wu (1987), the segment 
A B  is partitioned into M E  subintervals (djl ,dj3).  With the end points djl ,dj3 and 
midpoint dj, of each subinterval to be chosen as interpolating points, the density 
function is approximated by piecewise polynomials of second order interpolating the 
density function at these nodal points, Truncating the infinite series at the N,th term, 
(3.1 5 )  becomes 

j=1 n=o J dj, 
where 

(3.16) 
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Here A,jrc. (k  = 1,2,3) are the corresponding values of the density function at three 
interpolating points. Substituting (3.17) into (3.16), after some algebraic manipulation 
we have 

N E  M E  

Q(R Z, i3 = (--Em 2, Em, 0) + C C [An, z(j-1)+1 
n=o m=l 

+An,z(j-1)+2 WEnj2+An,2(j--1)+3 I . t 7 E , j 3 1  (3.18) 

where WE,,, (k = 1,2,3) are vector functions defined as follows: 

WE,,., = (WEZL, WE$L, WEZL), 

1 
WE:;, = %[dj2 dj3 TEtI1-(dj, + dj3) TE:& + TEtI3)], 

1 
= %[d,,d,., TE$-(d j l+djz )  TE$ + TE:j3)], 

in which i can be either 1, 2 or 3 and 

h = i(dj3 - djl), 

[’-’ S E t ) ( R ,  Z ,  [) d[ ( i  = 1,2,3) (k  = 1,2,3). 

(3.19 a) 

(3.19b) 

(3.19 c) 

(3.20) 

(3.21) 

If the electric field E and the outer normal vector of the surface of the body n have 
the components E,, ER and n,, nR in cylindrical coordinates, then the boundary 
condition on the surface of the particle ( 2 . 2 ~ )  can be written as 

n,E,+n,E, = 0. (3.22) 

Hence we can substitute the last two components in (3.12) into (3.22) to yield a set of 
linear system of unknown coefficients Anj ,  (k  = 1,2,3). TE$, (i = 1,2,3) can be 
evaluated by recurrence formulae as shown in an Appendix.7 

Applying the boundary collocation technique, boundary condition (2.2 a)  is exactly 
satisfied at (NE+ 1 )  (2ME+ 1) points on the surface of the particle. The equation (3.18) 
is then reduced to a system of (N,+ 1) (2ME + 1) linear algebraic equations to 
determine the unknown coefficients An,.,, which can be solved by a standard matrix 
inversion method, required for final determination of the approximate electric field 
distribution. The accuracy of the solution can be improved in principle to any degree 
by increasing the values of NE and ME. 

3.2. Fluid velocity distribution 
Once the electric field is obtained, we next turn to consider the hydrodynamic field. A 
procedure similar to that in 93.1 for the electric field distribution is adopted. First we 
write the expressions for a singularity S located at R = 0, Z = 6 in the presence of an 
infinite planar wall (Yuan & Wu 1987): 

m 

w, z, L 9  = C [C, S?’(R, z, 6) + D, S t ) ( R ,  z, 81, (3.23) 
n=z 

The Appendix is available from the Editorial Office or the authors. 
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2(n - 1 )  (n  - 3) + n (Z-d)F:2,(R,2d-Z-Qn, (3.25d) 

S f ) (R ,Z ,Q  = F~)(R7Z-~-Ff)(R72d-Z-Q-2(n-2)(Z-d)F~21(R,2d-Z-fn 

+2(2n-3) (Z -d ) (d - ( )Fg) (R ,  2d-Z-5) ,  (3 .25f)  

S ~ ) ( R ,  Z, Q = 4(n + 1 )  F::,(R, 2 d - 2 -  [I, (3.25 d 
4n-6 

n S?(R, z, 5) = -F:jl(R, 2, Q + 4(2n - 3) (d-  Q F:)(R, 2d- 2- Q 

2(2n2 - 6n + 3) 
- n F:J1(R,2d-Z-Q, (3.25h) 

(3.28) 

(3.29) 

The singularity S is distributed continuously along AB, which is then divided into 
MF subintervals with density function approximated by piecewise quadratic poly- 
nomials. Truncating the infinite series at the N,th terms, (3.23) can be written as 

j=1 n=2 
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where 

while TZjk(R, Z )  = 1:; Elc-' St ) (R ,  Z,  g) dt. (3.34) 

The recurrence formulae for TZjk (i = 1, . . . ,8) can be found in the Appendix. 
As mentioned previously in $2, the hydrodynamic problem should be decomposed 

into two boundary value problems in order to calculate the electrophoretic mobility of 
the particle. The boundary condition on the surface of the particle for the second 
boundary value problem is now fully determined using the solutions for the electric 
field (3.18). By means of the collocation technique, the boundary condition (2.8) or 
(2.9) is applied at (NF-  1) (2MF + 1) discrete points and two sets of linear algebraic 
equations are generated for the unknown coefficients Cnj and Dnj.  The fluid velocity 
field is completely solved once these coefficients are evaluated. The drag force E; and 
F, exerted by the fluid on the particle can be determined from Happel & Brenner (1983) 

(3.35) 

Substituting the expression for $ into (3.35) and considering the orthogonality 
properties of Legendre and Gegenbauer functions, we obtain 

2n:q mF 

~ = - - ~ [ D  3 j = 1  2, 20.-1)+1+02,2(j--1)+2+02,2(j-1)+31(dj3-djl) (i = l7 2)- (3*36) 

4. Results and discussion 
Consider as two examples the electrophoretic motion of a non-conducting prolate 

spheroid and Cassini oval translating perpendicularly to an infinite conducting planar 
wall. 

The equation for the prolate spheroid is 

z = acos9, R = bsin9, c = (a2-b2)i, h = a/b, (4.1) 
where a and b are the major and minor axes respectively, c is the focus, 9 is the polar 
angle. (- c, 0) and (c, 0) are chosen as the points A and B. Without loss of generality, 
we take b = 1. 

The segment AB is partitioned into MF subintervals with equal length and the 
specification of collocation points along the surface of the spheroid follows the equal- 
spacing principle. To avoid the singularity of the coefficient matrix at the points 9 = 
0, in:, n:, four closely spaced adjacent points 9 = 8, an: & S, n: - S are taken instead of the 
above-mentioned points. S is taken as 0.01" in our numerical computation. 

The numerical results of the normalized electrophoretic mobility for various h < 3 
with spheroid-to-wall spacings a/d up to 0.9 are plotted in figure 2(a). The dynamic 



Electrophoretic motion of a prolate body 51 

1 .o 

0.8 

0.4 

0 0.2 0.4 0.6 0.8 
a/d 

1 .o 

0.8 

0.6 

0.4 

0.2 

0 0.2 0.4 0.6 0.8 
a/d 

FIGURE 2. (a) Electrophoretic mobilities (4nqU/4EEm) and (b) sedimentary mobilities (V/  V,) versus 
a/dforvariousAforprolatespheroid.A: 0-0, 3.0; A-A,2.5; 0 - 0 , 2 . 0 ;  M-M, 1.5; 0 - V ,  
1.25; A-A, 1.1; 0 - 0 ,  1.0. 
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mobility for sedimentary flow is shown in figure 2(b) for comparison (Yuan & Wu 
1987). All of the results obtained converge to at least four significant digits. For the 
most difficult case of h = 3 and a / d  = 0.9, the values of M E ,  NE,  MF and NF are 4,20, 
4 and 16 which are sufficiently large to reach convergence. In order to test the solution 
accuracy, two special cases are considered where the exact solutions are available for 
comparison. The first is the case as d+co or a / d  = 0;  the present problem becomes 
identical to that of the electrophoretic motion of an isolated prolate spheroid in an 
unbounded electrolyte solution with a uniformly applied electric field. Our solutions at 
d = 10, a / d  = 0.1 are compared with the exact solutions when d - t m  where the 
dimensionless electrophoretic mobility is equal to unity (Morrison 1970). Results are 
found to be identical to four digits. The second case is h = 1, when the spheroid 
becomes a sphere. The results for this case are compared with the exact solutions for 
the electrophoretic motion of a sphere normal to a conducting infinite planar wall (Keh 
& Lien 1989). Our values agree with Keh's to four digits. The accuracy test just 
summarized indicates that reliable results with high accuracy can be achieved using the 
proposed method. 

From the data and curves shown in figure 2, some interesting features can be 
revealed : (i) both the electrophoretic and hydrodynamic mobilities decrease mono- 
tonically when the spheroid approaches the wall ; (ii) the wall effect on electrophoresis 
is much weaker than that on sedimentation; (iii) the wall effect on electrophoresis will 
reduce with the increase of slenderness ratio of the spheroid. Features (i) and (ii) are 
similar to the case of a sphere, while (iii) is entirely new. It demonstrates the influence 
of the body shape parameter of a spheroid on the electrophoresis. These three 
characteristics can be easily understood physically. 

It is well known that the electrophoretic velocity is controlled by two main factors: 
viscous retardation of the fluid as the particle moves in response to the applied electric 
field; and the electric driving force which leads to an opposite effect. Therefore the 
electrophoretic velocity of the particle will always be greater than the sedimentary 
velocity. Moreover, the relative increment of the viscous drag due to the decrease of 
d/a and a /b  exceeds that of the electric driving force. Hence from (2.12) the wall and 
shape effect on electrophoresis will increase with the decrease of d / a  and a/b. 

The streamlines for the electrophoretic and sedimentary motion of a colloidal 
prolate spheroid travelling perpendicularly towards an infinite planar wall along the 
axis of revolution with a / b  = 1.5 and d /a  = 1.54 are depicted in figure 3 (a)  and 3 (b) 
respectively. From these figures we can see that the flow pattern of the electrophoretic 
motion differs significantly from that of the corresponding sedimentary flow. This 
difference can be explained by the influence of the diffuse double layer at the spheroid 
surface on the flow. In fact, the case of sedimentation resulting from the movement of 
a spheroid toward a wall, the disturbance thus induced is that of a Stokeslet, while for 
the electrophoretic motion, the particle is force free and thus from figure 3(a) and 
(3.14), the primary disturbance caused by the particle can be described by a potential 
doublelet. In other words, the disturbance to the fluid velocity field caused by an 
electrophoretic spheroid decays much faster (as r3) than that caused by a settling 
spheroid (as r-'), where Y is the distance from the spheroid centre. 

From figure 3 (b), the streamlines of the sedimentary flow have only one recirculation 
region which moves nearer to the surface of the body as it gets nearer to the wall, while 
for the electrophoretic motion, in addition to the inner recirculation region near the 
body surface, there is another outer recirculation region swirling in the opposite 
direction far away from the particle (see figure 3a). Note that the fluid field contains 
a stagnation point on the axis of symmetry and a circle of stagnation points on the wall. 
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FIGURE 3. Streamlines for (a)  electrophoretic motion and (b) for sedimentary motion of the 
prolate spheroid of a = 1.5, d/a  = 1.54. 
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FIGURE 4. Electric field lines for the prolate spheroid with a = 1.5, d/a  = 1.54. 

E I 

I I 

FIGURE 5. Configuration of a prolate Cassini oval in electrophoretic motion towards an infinite 
conducting wall. 

Both recirculations are divided by a separating streamline @ = 0, which intersects the 
axis and the wall at these stagnation points. The existence of a toroidal inner 
circulation pattern for the electrophoretic motion corresponds to that of a potential 
dipole. 

The electric field lines for the case shown in figure 3 are presented in figure 4. The 
local electric field line at the spheroid surface on the side facing the wall appears to be 
reduced in comparison with that on the far side. 

Another example presented here to demonstrate the generality of the proposed 
method is a prolate Cassini oval moving perpendicularly towards an infinite conducting 
planar wall. The equation for a Cassini oval in polar coordinates is (figure 5 )  

(4.2) p2 = c2 cos 29 + (a4 - c4 sin2 29); (a  > c > o), 

where p ,9  are radius and polar angle respectively, c is the focus, a is a constant and 
b = (a2 - 2))" is the distance from the origin to the intersection point formed by the oval 
with the R-axis. Again we choose b = 1 for convenience and (- c, 0), (c ,  0) are segment 
end points A and B, respectively. Collocation points are arranged similarly to those in 
the case of a spheroid. Convergent results to at least four significant digits are depicted 
in figures 6(a)  and 6 (b) for electrophoretic mobilities and sedimentary mobilities for 
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FIGURE 6. (a)  Electrophoretic mobilities (4~71 U/sSE,), and (b) sedimentary mobilities ( V /  V,) versus 
a,/d for various c for Cassini ovals : c :  A - A, 0.3 ; A - A, 0.5 ; H - H, 0.8 ; 0 - 0, 1 .O; 0 - 0, 
1.5; V-V, 2.0; V-V, 2.5. 
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various a,/d and c, where a, is the distance from the origin to the intersection point at 
the Z-axis of the particle. The curves for the mobilities of a Cassini oval are quite 
similar to those of the spheroid and so the conclusions for the spheroid are also valid 
here. An example of flow patterns of electrophoresis and sedimentation together with 
the corresponding electric field lines are presented in figures 7 and 8 for a slightly 
concaved Cassini oval with c = 1.5, d/a = 2.35. 
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FIGURE 8. Electric field lines for the Cassini oval with c = 1.5, d/a = 2.35. 

5 .  Concluding remarks 
In the present paper, the method of internal distribution of singularities developed 

by Wu (1984) has been applied to obtain the solution of the problem of the 
electrophoretic motion of an arbitrary prolate particle of revolution towards an infinite 
conducting planar wall. As two examples, a prolate spheroid and a prolate Cassini oval 
with different shapes and various spacings from the wall are considered. The numerical 
results indicate that impressive convergence and accuracy characteristics can be 
achieved using this procedure with acceptable computational expense. Both the 
boundary effect and the influence of the particle shape are studied and the results are 
significantly different from those in the unbounded case or of a spherical particle. The 
most important result in this work is that the wall effect on electrophoretic mobility will 
reduce with the increase of slenderness ratio of the particle. It is shown that the present 
method is particularly suitable for non-slender bodies and needs a relatively small 
amount of computation compared with other methods such as the boundary integral 
method. Moreover, this method can be easily extended to more complex particle- 
particle or particle-boundary interaction problems. 
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